prof. UAM dr hab. Mikołaj Pochylski

Zainteresowania naukowe
- Dynamika i struktura materii miękkiej (ciecze przechłodzone i szkliwa, układy samo-organizujące)
- Płyny w zewnętrznych polach fizycznych (magnetycznie i elektrycznie indukowana orientacja, elektro-reologia)
- Optyczne metody eksperymentalne (rozpraszanie światła, polarymetria, mikroskopia)
Współpraca z zagranicznymi ośrodkami naukowymi
- Institute for Physico-Chemical Processes, National Council of Science (CNR), Messina, Italy
- Institute for Nanostuctured Materials, National Council of Science (CNR), Rome, Italy
Wykształcenie
- 1996: Zespół Szkół Elektrycznych nr2, ul. Świt 25 (Elektromechanik urządzeń przemysłowych)
- 2001: Magister Fizyki, Wydział Fizyki UAM
- 2006: Doktor Fizyki, Wydział Fizyki UAM
- 2017: Doktor habilitowany, Wydział Fizyki UAM
Inne informacje
- Skarbnik Oddziału poznańskiego Polskiego Towarzystwa Fizycznego
- Certyfikowany programista LabVIEW, Certified LabVIEW Associate Developer (CLAD), 2010
2020
Babačić, Višnja; Varghese, Jeena; Coy, Emerson; Kang, Eunsoo; Pochylski, Mikołaj; Gapiński, Jacek; Fytas, George; Graczykowski, Bartłomiej
Mechanical reinforcement of polymer colloidal crystals by supercritical fluids Journal Article
In: Journal of Colloid and Interface Science, vol. 579, pp. 786 - 793, 2020, ISSN: 0021-9797.
Abstract | Links | BibTeX | Tagi: Brillouin light scattering, Colloidal crystals, Phononic crystals, Photonic crystals, Plasticization
@article{BABACIC2020786,
title = {Mechanical reinforcement of polymer colloidal crystals by supercritical fluids},
author = {Višnja Babačić and Jeena Varghese and Emerson Coy and Eunsoo Kang and Mikołaj Pochylski and Jacek Gapiński and George Fytas and Bartłomiej Graczykowski},
url = {http://www.sciencedirect.com/science/article/pii/S0021979720308493},
doi = {https://doi.org/10.1016/j.jcis.2020.06.104},
issn = {0021-9797},
year = {2020},
date = {2020-01-01},
journal = {Journal of Colloid and Interface Science},
volume = {579},
pages = {786 - 793},
abstract = {Colloidal crystals realized by self-assembled polymer nanoparticles have prominent attraction as a platform for various applications from assembling photonic and phononic crystals, acoustic metamaterials to coating applications. However, the fragility of these systems limits their application horizon. In this work the uniform mechanical reinforcement and tunability of 3D polystyrene colloidal crystals by means of cold soldering are reported. This structural strengthening is achieved by high pressure gas (N2 or Ar) plasticization at temperatures well below the glass transition. Brillouin light scattering is employed to monitor in-situ the mechanical vibrations of the crystal and thereby determine preferential pressure, temperature and time ranges for soldering, i.e. formation of physical bonding among the nanoparticles while maintaining the shape and translational order. This low-cost method is potentially useful for fabrication and tuning of durable devices including applications in photonics, phononics, acoustic metamaterials, optomechanics, surface coatings and nanolithography.},
keywords = {Brillouin light scattering, Colloidal crystals, Phononic crystals, Photonic crystals, Plasticization},
pubstate = {published},
tppubtype = {article}
}
Colloidal crystals realized by self-assembled polymer nanoparticles have prominent attraction as a platform for various applications from assembling photonic and phononic crystals, acoustic metamaterials to coating applications. However, the fragility of these systems limits their application horizon. In this work the uniform mechanical reinforcement and tunability of 3D polystyrene colloidal crystals by means of cold soldering are reported. This structural strengthening is achieved by high pressure gas (N2 or Ar) plasticization at temperatures well below the glass transition. Brillouin light scattering is employed to monitor in-situ the mechanical vibrations of the crystal and thereby determine preferential pressure, temperature and time ranges for soldering, i.e. formation of physical bonding among the nanoparticles while maintaining the shape and translational order. This low-cost method is potentially useful for fabrication and tuning of durable devices including applications in photonics, phononics, acoustic metamaterials, optomechanics, surface coatings and nanolithography.